
MPC-hardness and
applications

Stefan Dziembowski

Central European Conference on Cryptology

Budapest, June19, 2025

This talk is based on

• J. Bormet, S. D., S. Faust, T. Lizurej, and M. Mielniczuk:
Strong Secret Sharing with Snitching, CRYPTO
2025

• S. D., S. Faust, T. Lizurej, and M. Mielniczuk: Secret
Sharing with Snitching, ACM CCS 2024

• S. D., S. Faust, and T. Lizurej:
Individual Cryptography, CRYPTO 2023

Independent work:

• M. Kelkar, K. Babel, P. Daian, J. Austgen, V. Buterin, A. Juels:
Complete Knowledge: Preventing Encumbrance
of Cryptographic Secrets.ACM CCS 2024

Plan

1. Introduction to different models in
distributed cryptography

2. Secret Sharing with Snitching

3. Other applications of MPC-hardness

4. Extensions and research problems

Distributed cryptography

Protocols between a group of parties that want to
achieve a

common goal

even though they

don’t trust each other.

Two approaches

• classical cryptographic approach
(MPCs, consensus, broadcast,…)
– an active area since the 1980s.

• blockchain – introduced in 2008 by an
anonymous author

slightly different models

MPC = Multiparty Computations

𝒇 – publicly known function

Protocols that allow a group of

parties to securely evaluate

 𝒚 ≔ 𝒇(𝒙𝟏, … , 𝒙𝒏)

E.g., voting (𝒙𝒊 ∈ 𝟎, 𝟏 ⊆ 𝐍):

𝒇 𝒙𝟏, … , 𝒙𝒏 = 𝒙𝟏 + ⋯ + 𝒙𝒏

Can be generalized to reactive

functionalities (e.g., auctions).

𝒙𝟏

𝒙𝟐

𝒙𝟑𝒙𝟒

𝒙𝟓

𝒚

𝒚

𝒚

𝒚

𝒚

Typical settings
𝒏 - number of parties

The protocol is attacked by
the adversary who can
corrupt up to

𝒕 < 𝒏

parties.

Common assumptions:

“honest majority”:

𝒕 < 𝒏/𝟐

“honest supermajority”:
𝒕 < 𝒏/𝟑

𝒕 corrupt

𝒏 − 𝒕 honest

adversary

“Secure evaluation”?

Typical requirements:

correctness – the output is correct

privacy – the inputs remain private

The only way the adversary can influence the output

is to manipulate the inputs of the corrupt parties.

The adversary does not learn more than she can infer

from the input and output of corrupt parties.

State of the art

In theory, every function 𝒇 can be “compiled”
into an MPC protocol.

Caveat: Despite enormous progress, MPCs remain
relatively inefficient.

maximal corruption threshold depends on the

settings (computational/unconditional security, etc.)

orders of magnitude less efficient than computing 𝒇

“in plain”

Blockchains

≈ protocols for constructing “distributed ledgers”

Typically, also based on “(super)honest majority”
assumptions, measured in terms of:

• computing power (PoW-blockchains)

• financial resources (PoStake-blockchains)

• disk space (PoSpace-blockchains)

• …

Turns out:

Blockchain literature usually interprets “honest majority”

differently from the MPC literature.

“Honest behavior” in MPC

≤ 𝒕
corrupt

parties

honest

𝒏 – number of parties

𝒕 – corruption threshold

In blockchain 𝒏 – number of parties

𝒕 – corruption threshold

Each adversary can corrupt < 𝒕 parties.

They are selfish and compete.

There are multiple adversaries

Example: Bitcoin’s blockchain

In blockchain all parties are corrupt,
but by different adversaries.

Question: Can we adapt “traditional
MPCs” to these settings?

Correctness – can be addressed, e.g.,
by using an incentive mechanism and
punishments to ensure that the output
is computed correctly.

(out of scope of this talk)

Secrecy – less clear…

For general MPCs,

see, e.g., [ADMM14]

and the follow up

work

our topic today

Plan

1. Introduction to different models in
distributed cryptography

2. Secret Sharing with Snitching

3. Other applications of MPC-hardness

4. Extensions and research problems

Case study: 𝒕-out-of-𝒏 secret sharing

Secret Sharing [Shamir’79]: a protocol that permits
a dealer to share a secret 𝑺 among a group of 𝒏
parties, so that:

• any set of 𝒕 parties can learn 𝑺

• no set of < 𝒕 parties can get any information about 𝑺.

Pictorially

secret 𝑺

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

“shares” • 𝒕 shares suffice to reconstruct 𝑺
• < 𝒕 shares reveal no information about 𝑺

𝐬𝐡𝐚𝐫𝐞 𝑺

dealer 𝑫

𝒏 – number of parties

𝒕 – corruption threshold

Example 𝒕 = 𝟒

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

doesn’t know 𝑺

know 𝑺

Example of use

secret 𝑺

They should reconstruct 𝑺 only if a certain event happens.

Call an earlier reconstruction “illegal”.

How to implement it?

Suppose 𝑺 ∈ 𝟎, 𝟏 𝒎

𝒏-out-of-𝒏 secret sharing:
𝐬𝐡𝐚𝐫𝐞 𝑺 ≔ 𝑺𝟏, … , 𝑺𝒏

Where 𝑺𝟏, … , 𝑺𝒏 are random such that
𝑺𝟏 ⊕ ⋯ ⊕ 𝑺𝒏 = 𝑺

To reconstruct just xor the 𝑺𝒊‘s.

𝒕-out-of-𝒏 secret sharing: see [Shamir’79]

𝒎 – some parameter

string xor

operation

call it “xor secret sharing”

Problem

Preventing this looks impossible…

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

knows

𝑺𝟏, 𝑺𝟐

knows

𝑺𝟑, 𝑺𝟒

knows

𝑺𝟓

knows

𝑺𝟔, 𝑺𝟕

together they can compute

𝑺 ≔ 𝑺𝟏 ⊕ ⋯ ⊕ 𝑺𝟕

Learning a secret is a “passive attack” and can be done
entirely “outside the protocol”.

Our idea

Since illegal reconstruction cannot be prevented, at least
make it provable and punishable.

In other words, create a mechanism for economically
disincentivizing illegal reconstruction.

Recall that the adversaries are competing.

So: create a system for reporting “illegal reconstruction”
to some judge.

The judge

An entity to whom the parties can snitch
if someone was collaborating with them
to illegally reconstruct 𝒔.

Practical example: smart contracts

Agreements on blockchain that are:

• enforceable by the blockchain mechanics,

• public-state

• can own coins
available, e.g.,

on Ethereum

Consider 𝟐-out-of-𝟐 secret sharing

the dealer

Alice
Bob

the judge can be confiscated

and shared between

the other participants

• trusted

• public-state

• can own coins

Each party (except of the judge)

can be “selfish”

share

Sharing and reconstructing

in: secret 𝑺

share 𝑺𝑨 share 𝑺𝑩

punishment information 𝒁

not needed for the

reconstruction

reconstruction

𝑺 𝑺

Snitching

snitch by providing a proof π𝐴

punish Alice snitch by providing a proof π𝐵

punish Bob

can be incentivized to snitch by getting part of

Alice’s deposit

share 𝑺𝑨 share 𝑺𝑩

𝒁

Suppose Alice and Bob illegally reconstruct the secret.

malicious

Alice

malicious

Bob

Note

We are interested in deterring “illegal reconstruction”.

So, if they can both snitch on each other, it’s even better.

I can snitch on you I can snitch on you

Construction?

Secret Sharing without Snitching

secret 𝑺 ∈ 𝟎, 𝟏 𝒎

𝑺𝑨 𝑺𝑩

𝑺𝑨 and 𝑺𝑩 are

random such that

𝑺𝑨 ⊕ 𝑺𝑩 = 𝑺

Recall:

A straw-man proposal
Use the standard secret sharing

𝑺𝑨

Assumption: illegal reconstruction

is done by sending shares

snitch by sending 𝑺𝑨
Problem:

The dealer knows 𝑺𝑨 so

he can frame Alice or

Bob.
Note: adding signatures to the shares does not

help, since they can always be stripped off.

share 𝑺𝑨
share 𝑺𝑩

secret 𝑺

A better idea

secret 𝑺

share ෡𝑺𝑨 share ෡𝑺𝑩

punishment information

𝒁 ≔ 𝒇(𝒀)

𝒇 – a one-way function

xor shares of ෡𝑺

Compute in MPC:

1. sample 𝒀 – a random string

2. let ෡𝑺 ≔ (𝑺||𝒀)
3. compute ෡𝑺𝑨, ෡𝑺𝑩 – xor sharing of ෡𝑺
4. compute 𝒁 ≔ 𝒇 𝒀

Snitching and punishment

secret 𝑺

punishment information 𝒁 ≔ 𝒇(𝒀)

෡𝑺 ≔ (𝑺||𝒀)

𝒀 – a random string𝒇 – a one-way function

reconstruct ෡𝑺

parse ෡𝑺 as (𝑺||𝒀)

snitch by sending 𝒀

if 𝒁 = 𝒇(𝒀) then punish Bob

෡𝑺 ෡𝑺

punishment

information

𝒁 = 𝒇(𝑿)

punishment

information

𝒁 = 𝒇(𝑿)

Problem
Instead of doing this:

reconstruct ෡𝑺

parse ෡𝑺 as (𝑺||𝒀)

They can do this:

truncate the shares ෡𝑺𝑨

 and ෡𝑺𝑩 and reconstruct 𝑺

directly

෡𝑺 ෡𝑺

So: snitching is prevented!

෡𝑺𝑨 ෡𝑺𝑩

𝑺 𝑺

෡𝑺𝑨 ෡𝑺𝑩

More generally

Even if they use some other secret sharing, they can
do the following:

use MPC to

1. reconstruct ෡𝑺
2. parse ෡𝑺 as (𝑺||𝒀)
3. output 𝑺𝑺 𝑺

෡𝑺𝑨
෡𝑺𝑩

Moral

We need Secret Sharing, in which reconstruction is
“hard in MPC”.

1. reconstruct ෡𝑺
2. parse ෡𝑺 as (𝑺||𝒀)
3. output 𝑺𝑺 𝑺

hard in MPC

Hence:

knows ෡𝑺 = (𝑺||𝒀)
and can snitch on

Bob using 𝒀

knows ෡𝑺 = (𝑺||𝒀)
and can snitch on

Alice using 𝒀

or

How to model it?
Main building block: hash functions

𝑯

modeled as a

random oracle

𝒙

to avoid attacks that

exploit the

structure of 𝑯
 we only use fixed-

input length

functions.

The budget for slow queries is bounded.

Two types of queries:

• slow (computed in MPC) – the hash input is not known to

any individual party

• fast – the input needs to be known to some individual party

More formally

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟏𝟒 𝒙𝟏𝟓

transcript of corrupt Alice

transcript of corrupt Bob

slow queries

used for snitching on Bob

Generalizes easily to multiparty settings

used for

snitching on

Alice

Our construction

Main idea: to reconstruct the secret, the parties
need to compute a massive number of hashes 𝑯.

More precisely:

1. Sharing requires a small number of MPC
computations of 𝑯.

2. Reconstructing requires inverting 𝑯 by brute-
forcing it.

Sharing (simplified)

secret 𝑺

𝒌 – security parameter

𝒅 – “moderate hardness” parameter

𝑯, 𝑮 – hash functions

𝑿𝑩 ← 𝟎, 𝟏 𝒌
compute in MPC:

1. sample 𝒀 ← 𝟎, 𝟏 𝒅

2. let 𝒁 ≔ 𝑯(𝑿𝑨 ⊕ 𝑿𝑩 | 𝒀

𝒁

𝑪 ≔ 𝑮 𝑿𝑨 ⊕ 𝑿𝑩 || 𝒀 ⊕ 𝑺
𝒁

𝑿𝑨 ← 𝟎, 𝟏 𝒌

Reconstruction 𝒁 ≔ 𝑯(𝑿𝑨 ⊕ 𝑿𝑩 | 𝒀
𝑪 ≔ 𝑮 𝑿𝑨 ⊕ 𝑿𝑩 || 𝒀 ⊕ 𝑺

1. compute 𝑿 ≔ 𝑿𝑨 ⊕ 𝑿𝑩
2. find 𝒀 such that 𝒁 ≔ 𝑯(𝑿 | 𝒀
3. output 𝑺 ≔ 𝑮 𝑿 || 𝒀 ⊕ 𝑺

𝑿𝑨

𝑪

𝑿𝑩

𝑿𝑩

brute force

Snitching

𝒁

𝑿 and 𝒀 such that

𝑯(𝑿 ||𝒀) = 𝒁

brute force

1. compute 𝑿 ≔ 𝑿𝑨 ⊕ 𝑿𝑩

2. find 𝒀 such that 𝒁 ≔ 𝑯(𝑿 | 𝒀

3. output 𝑺 ≔ 𝑮 𝒀 ⊕ 𝑪

Full version

We need 𝒌 variables 𝒀 instead of one.

We generalize the definition to 𝒕-out-of-𝒏 SSS

We use 𝟐-out-of-𝟐 SSS to build 𝒕-out-of-𝒏 SSS

For the details: see our ACM CCS’24 paper.

An example of an application

MEV – protection

Instead of posting a transaction 𝑺 directly on a blockchain,
a user secret-shares it with some consortium.

The consortium reconstructs 𝑺 after some time has
passed.

Note: no long-term protection is needed.

“Maximal Extractable Value”

Alternative solutions

Collusion-free protocols make physical
assumptions that prevent communication
between the parties.

Traceable secret sharing (based on traitor
tracing techniques) – assume that
reconstruction is done by physical boxes that
are given to the adversary.

(see our ACM CCS’24 paper for more on this
related work).

Bonus question

What if the adversaries can also use a judge whom
they all fully trust?

For example, they can deploy their own smart
contract on the blockchain.

Our new notion: Strong Secret Sharing with
Snitching

Strong Secret Sharing with Snitching

honest parties judge

adversaries “adversarial”

judge

honest

adversarial

Example of an attack: insurance

Consider again 𝟐-out-of-𝟐 secret sharing.

“adversarial”

judge

Alice Bob

Compensates Alice if she

is punished

(The parties first deposit

coins that will be used

for such compensation)

𝑺𝑨

share 𝑺𝑨 share 𝑺𝑩

computes

𝑺 ≔ 𝑺𝑨 ⊕ 𝑺𝑩

locally

If Bob snitches, then

Alice gets compensated

by the adversarial judge

Our contribution

1. A new model that captures such attacks.

2. A construction that is secure in this model.

based on the idea of self-snitching

“everybody can punish itself”

(requires the use of Non-Interactive Zero

Knowledge to make the self-snitching

undistinguishable from the real snitching)

Plan

1. Introduction to different models in
distributed cryptography

2. Secret Sharing with Snitching

3. Other applications of MPC-hardness

4. Extensions and research problems

(Zero-Knowledge) Proofs of
Individual Knowledge (PIK)

[D., et al., CRYPTO 2023]

a similar notion: Proofs of Complete Knowledge
[Kelkar, et al., ACM CCS 2024]

prover proves that a

message 𝑴 is stored

entirely on a single

machine

verifier verifies

this claim

knows 𝑴

or

(in the ZK variant)

has some information

about 𝑴

Applications of PIK

• preventing account sharing

• deniable messaging

• preventing vote selling in online voting

see: [D., et al., CRYPTO 2023, Kelkar, et al.,
ACM CCS 2024]

Another recent work in this
model

J. Hsin-yu Chiang, B. David, T. Kasper Frederiksen, A.
Mondal, E. Yeniaras:

Detecting Rogue Decryption in (Threshold)
Encryption via Self-Incriminating Proofs

ePrint 2024

Plan

1. Introduction to different models in
distributed cryptography

2. Secret Sharing with Snitching

3. Other applications of MPC-hardness

4. Extensions and research problems

Extensions

• Weaker modeling of fast queries

• Making it compatible with Bitcoin mining rigs (hope:
better security against TEEs)

• Building protocols on top of SSS

Research question:

1. Study MPC-hard primitives

2. Combine individual crypto it with timed crypto

Thanks!

	Slide 1: MPC-hardness and applications
	Slide 2: This talk is based on
	Slide 3: Plan
	Slide 4: Distributed cryptography
	Slide 5: Two approaches
	Slide 6: MPC = Multiparty Computations
	Slide 7: Typical settings
	Slide 8: “Secure evaluation”?
	Slide 9: State of the art
	Slide 10: Blockchains
	Slide 11: “Honest behavior” in MPC
	Slide 12: In blockchain
	Slide 13: Example: Bitcoin’s blockchain
	Slide 14: In blockchain all parties are corrupt, but by different adversaries.
	Slide 15: Plan
	Slide 16: Case study: bold italic t-out-of-bold italic n secret sharing
	Slide 17: Pictorially
	Slide 18: Example bold italic t equals bold 4
	Slide 19: Example of use
	Slide 20: How to implement it?
	Slide 21: Problem
	Slide 22: Our idea
	Slide 23: The judge
	Slide 24: Consider bold 2-out-of-bold 2 secret sharing
	Slide 25: Sharing and reconstructing
	Slide 26: Snitching
	Slide 27: Note
	Slide 28: Construction?
	Slide 29: Secret Sharing without Snitching
	Slide 30: A straw-man proposal
	Slide 31: A better idea
	Slide 32: Snitching and punishment
	Slide 33: Problem
	Slide 34: More generally
	Slide 35: Moral
	Slide 36: How to model it?
	Slide 37: More formally
	Slide 38: Our construction
	Slide 39: Sharing (simplified)
	Slide 40: Reconstruction
	Slide 41: Snitching
	Slide 42: Full version
	Slide 43: An example of an application
	Slide 44: Alternative solutions
	Slide 45: Bonus question
	Slide 46: Strong Secret Sharing with Snitching
	Slide 47: Example of an attack: insurance
	Slide 48: Our contribution
	Slide 49: Plan
	Slide 50: (Zero-Knowledge) Proofs of Individual Knowledge (PIK)
	Slide 51: Applications of PIK
	Slide 52: Another recent work in this model
	Slide 53: Plan
	Slide 54: Extensions
	Slide 55: Thanks!

