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Distributed cryptography

Protocols between a group of parties that want to 
achieve a 

common goal

even though they 

don’t trust each other.



Two approaches

• classical cryptographic approach
(MPCs, consensus, broadcast,…) 
– an active area since the 1980s.

• blockchain – introduced in 2008 by an 
anonymous author

slightly different models



MPC = Multiparty Computations

𝒇 – publicly known  function

Protocols that allow a group of 

parties to securely evaluate

 𝒚 ≔  𝒇(𝒙𝟏, … , 𝒙𝒏) 

E.g., voting (𝒙𝒊 ∈ 𝟎, 𝟏 ⊆ 𝐍): 

𝒇 𝒙𝟏, … , 𝒙𝒏 = 𝒙𝟏 + ⋯ + 𝒙𝒏 

Can be generalized to reactive 

functionalities (e.g., auctions).

𝒙𝟏

𝒙𝟐

𝒙𝟑𝒙𝟒

𝒙𝟓

𝒚

𝒚

𝒚

𝒚

𝒚



Typical settings
𝒏 - number of parties

The protocol is attacked by 
the adversary who can 
corrupt up to 

𝒕 < 𝒏 

parties.

Common assumptions:

“honest majority”:

𝒕 < 𝒏/𝟐 

“honest supermajority”:
𝒕 < 𝒏/𝟑

𝒕 corrupt

𝒏 − 𝒕 honest

adversary



“Secure evaluation”?

Typical requirements:

correctness – the output is correct 

privacy – the inputs remain private

The only way the adversary can influence the output 

is to manipulate the inputs of the corrupt parties.

The adversary does not learn more than she can infer 

from the input and output of corrupt parties.



State of the art

In theory, every function 𝒇 can be “compiled” 
into an MPC protocol.

Caveat: Despite enormous progress, MPCs remain 
relatively inefficient.

maximal corruption threshold depends on the 

settings (computational/unconditional security, etc.)

orders of magnitude less efficient than computing 𝒇 

“in plain” 



Blockchains

≈ protocols for constructing “distributed ledgers”

Typically, also based on “(super)honest majority” 
assumptions, measured in terms of:

• computing power (PoW-blockchains)

• financial resources (PoStake-blockchains)

• disk space (PoSpace-blockchains)

• …

Turns out: 

Blockchain literature usually interprets “honest majority” 

differently from the MPC literature.



“Honest behavior” in MPC

≤ 𝒕
corrupt

parties

honest

𝒏 – number of parties

𝒕 – corruption threshold 



In blockchain 𝒏 – number of parties

𝒕 – corruption threshold 

Each adversary can corrupt < 𝒕 parties.

They are selfish and compete.

There are multiple adversaries



Example: Bitcoin’s blockchain



In blockchain all parties are corrupt, 
but by different adversaries.

Question: Can we adapt “traditional 
MPCs” to these settings?

Correctness – can be addressed, e.g., 
by using an incentive mechanism and 
punishments to ensure that the output 
is computed correctly.

(out of scope of this talk)

Secrecy – less clear…

For general MPCs, 

see, e.g., [ADMM14] 

and the follow up 

work

our topic today
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Case study: 𝒕-out-of-𝒏 secret sharing

Secret Sharing [Shamir’79]: a protocol that permits 
a dealer to share a secret 𝑺 among a group of 𝒏 
parties, so that:

• any set of 𝒕 parties can learn 𝑺

• no set of < 𝒕 parties can get any information about 𝑺. 



Pictorially 

secret 𝑺

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

“shares” • 𝒕  shares suffice to reconstruct 𝑺
• <  𝒕 shares reveal no information about 𝑺

𝐬𝐡𝐚𝐫𝐞 𝑺

dealer 𝑫

𝒏 – number of parties

𝒕 – corruption threshold 



Example 𝒕 = 𝟒

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

doesn’t know 𝑺

know 𝑺



Example of use

secret 𝑺

They should reconstruct 𝑺 only if a certain event happens.

Call an earlier reconstruction “illegal”.



How to implement it?

Suppose 𝑺 ∈ 𝟎, 𝟏 𝒎

𝒏-out-of-𝒏 secret sharing:
𝐬𝐡𝐚𝐫𝐞 𝑺 ≔ 𝑺𝟏, … , 𝑺𝒏

Where 𝑺𝟏, … , 𝑺𝒏 are random such that 
𝑺𝟏 ⊕ ⋯ ⊕ 𝑺𝒏 = 𝑺

To reconstruct just xor the 𝑺𝒊‘s.

𝒕-out-of-𝒏 secret sharing: see [Shamir’79]

𝒎 – some parameter

string xor 

operation

call it “xor secret sharing”



Problem

Preventing this looks impossible…

𝑺𝟏 𝑺𝟑𝑺𝟐 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕

knows 

𝑺𝟏, 𝑺𝟐

knows 

𝑺𝟑, 𝑺𝟒

knows 

𝑺𝟓

knows 

𝑺𝟔, 𝑺𝟕

together they can compute 

𝑺 ≔ 𝑺𝟏 ⊕ ⋯ ⊕ 𝑺𝟕

Learning a secret is a “passive attack” and can be done 
entirely “outside the protocol”.



Our idea

Since illegal reconstruction cannot be prevented, at least 
make it provable and punishable.

In other words, create a mechanism for economically 
disincentivizing illegal reconstruction. 

Recall that the adversaries are competing.

So: create a system for reporting “illegal reconstruction” 
to some judge.



The judge

An entity to whom the parties can snitch 
if someone was collaborating with them 
to illegally reconstruct 𝒔.

Practical example: smart contracts

Agreements on blockchain that are:

• enforceable by the blockchain mechanics,

• public-state

• can own coins
available, e.g., 

on Ethereum



Consider 𝟐-out-of-𝟐 secret sharing

the dealer

Alice
Bob

the judge can be confiscated 

and shared between 

the other participants

• trusted

• public-state

• can own coins

Each party (except of the judge) 

can be “selfish”



share

Sharing and reconstructing

in: secret 𝑺

share 𝑺𝑨 share 𝑺𝑩

punishment information 𝒁

not needed for the 

reconstruction

reconstruction

𝑺 𝑺



Snitching

snitch by providing a proof  π𝐴

punish Alice snitch by providing a proof  π𝐵

punish Bob

can be incentivized to snitch by getting part of 

Alice’s deposit 

share 𝑺𝑨 share 𝑺𝑩

𝒁

Suppose Alice and Bob illegally reconstruct the secret.

malicious 

Alice

malicious 

Bob



Note

We are interested in deterring “illegal reconstruction”. 

So, if they can both snitch on each other, it’s even better.

I can snitch on you I can snitch on you



Construction?



Secret Sharing without Snitching

secret 𝑺 ∈ 𝟎, 𝟏 𝒎

𝑺𝑨 𝑺𝑩

𝑺𝑨 and 𝑺𝑩 are 

random such that 

𝑺𝑨 ⊕ 𝑺𝑩 = 𝑺  

Recall:



A straw-man proposal
Use the standard secret sharing

𝑺𝑨

Assumption: illegal reconstruction 

is done by sending shares

snitch by sending 𝑺𝑨
Problem:

The dealer knows 𝑺𝑨 so 

he can frame Alice or 

Bob.
Note: adding signatures to the shares does not 

help, since they can always be stripped off.

share 𝑺𝑨
share 𝑺𝑩

secret 𝑺



A better idea

secret 𝑺

share ෡𝑺𝑨 share ෡𝑺𝑩

punishment information 

𝒁 ≔ 𝒇(𝒀)

𝒇 – a one-way function

xor shares of ෡𝑺 

Compute in MPC:

1. sample 𝒀 – a random string

2. let ෡𝑺 ≔ (𝑺||𝒀)
3. compute ෡𝑺𝑨, ෡𝑺𝑩 – xor sharing of  ෡𝑺
4. compute 𝒁 ≔ 𝒇 𝒀



Snitching and punishment

secret 𝑺

punishment information 𝒁 ≔  𝒇(𝒀)

෡𝑺 ≔ (𝑺||𝒀)

𝒀 – a random string𝒇 – a one-way function

reconstruct ෡𝑺 

parse ෡𝑺 as (𝑺||𝒀)

snitch by sending 𝒀

if 𝒁 = 𝒇(𝒀) then punish Bob

෡𝑺 ෡𝑺

punishment 

information

𝒁 = 𝒇(𝑿)

punishment 

information

𝒁 = 𝒇(𝑿)



Problem
Instead of doing this:

reconstruct ෡𝑺 

parse ෡𝑺 as (𝑺||𝒀)

They can do this:

truncate the shares ෡𝑺𝑨

 and ෡𝑺𝑩 and reconstruct 𝑺 

directly

෡𝑺 ෡𝑺

So: snitching is prevented!

෡𝑺𝑨 ෡𝑺𝑩

𝑺 𝑺

෡𝑺𝑨 ෡𝑺𝑩



More generally

Even if they use some other secret sharing, they can 
do the following:

use MPC to

1. reconstruct ෡𝑺
2. parse ෡𝑺 as (𝑺||𝒀)
3. output 𝑺𝑺 𝑺

෡𝑺𝑨
෡𝑺𝑩



Moral

We need Secret Sharing, in which reconstruction is 
“hard in MPC”.

1. reconstruct ෡𝑺
2. parse ෡𝑺 as (𝑺||𝒀)
3. output 𝑺𝑺 𝑺

hard in MPC

Hence:

knows ෡𝑺 = (𝑺||𝒀)
and can snitch on 

Bob using 𝒀

knows ෡𝑺 = (𝑺||𝒀)
and can snitch on 

Alice using 𝒀

or



How to model it?
Main building block: hash functions

𝑯

modeled as a 

random oracle

𝒙

to avoid attacks that 

exploit the 

structure of 𝑯
 we only use fixed-

input length 

functions.

The budget for slow queries is bounded.

Two types of queries:

• slow  (computed in MPC) – the hash input is not known to 

any individual party

• fast – the input needs to be known to some individual party



More formally

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑 𝒙𝟏𝟒 𝒙𝟏𝟓

transcript of corrupt Alice

transcript of corrupt Bob

slow queries

used for snitching on Bob

Generalizes easily to multiparty settings

used for 

snitching on 

Alice



Our construction

Main idea: to reconstruct the secret, the parties 
need to compute a massive number of hashes 𝑯.

More precisely:

1. Sharing requires a small number of MPC 
computations of 𝑯.

2. Reconstructing requires inverting 𝑯 by brute-
forcing it. 



Sharing (simplified)

secret 𝑺

𝒌 – security parameter

𝒅 – “moderate hardness” parameter

𝑯, 𝑮 – hash functions

𝑿𝑩 ← 𝟎, 𝟏 𝒌
compute in MPC:

1. sample 𝒀 ← 𝟎, 𝟏 𝒅

2. let 𝒁 ≔ 𝑯(𝑿𝑨 ⊕ 𝑿𝑩 |  𝒀

𝒁

𝑪 ≔ 𝑮 𝑿𝑨 ⊕ 𝑿𝑩 || 𝒀 ⊕ 𝑺
𝒁

𝑿𝑨 ← 𝟎, 𝟏 𝒌



Reconstruction 𝒁 ≔ 𝑯(𝑿𝑨 ⊕ 𝑿𝑩 |  𝒀
𝑪 ≔ 𝑮 𝑿𝑨 ⊕ 𝑿𝑩 || 𝒀 ⊕ 𝑺

1. compute 𝑿 ≔ 𝑿𝑨 ⊕ 𝑿𝑩 
2. find 𝒀 such that 𝒁 ≔ 𝑯(𝑿 |  𝒀
3. output 𝑺 ≔ 𝑮 𝑿 || 𝒀 ⊕ 𝑺

𝑿𝑨

𝑪

𝑿𝑩

𝑿𝑩

brute force



Snitching

𝒁

𝑿 and 𝒀 such that  

𝑯(𝑿 ||𝒀) = 𝒁

brute force

1. compute 𝑿 ≔ 𝑿𝑨 ⊕ 𝑿𝑩 

2. find 𝒀 such that 𝒁 ≔ 𝑯(𝑿 |  𝒀

3. output 𝑺 ≔ 𝑮 𝒀 ⊕ 𝑪



Full version

We need 𝒌 variables 𝒀 instead of one.

We generalize the definition to 𝒕-out-of-𝒏 SSS

We use 𝟐-out-of-𝟐 SSS to build 𝒕-out-of-𝒏 SSS

For the details: see our ACM CCS’24 paper.



An example of an application

MEV – protection

Instead of posting a transaction 𝑺 directly on a blockchain, 
a user secret-shares it with some consortium.

The consortium reconstructs 𝑺 after some time has 
passed.

Note: no long-term protection is needed.

“Maximal Extractable Value”



Alternative solutions

Collusion-free protocols make physical 
assumptions that prevent communication 
between the parties. 

Traceable secret sharing (based on traitor 
tracing techniques) – assume that 
reconstruction is done by physical boxes that 
are given to the adversary.

(see our ACM CCS’24 paper for more on this 
related work).



Bonus question

What if the adversaries can also use a judge whom 
they all fully trust?

For example, they can deploy their own smart 
contract on the blockchain.

Our new notion: Strong Secret Sharing with 
Snitching



Strong Secret Sharing with Snitching

honest parties judge

adversaries “adversarial” 

judge

honest

adversarial



Example of an attack: insurance

Consider again 𝟐-out-of-𝟐 secret sharing.

“adversarial” 

judge

Alice Bob

Compensates Alice if she 

is punished

(The parties first deposit 

coins that will be used 

for such compensation)

𝑺𝑨

share 𝑺𝑨 share 𝑺𝑩

computes 

𝑺 ≔ 𝑺𝑨 ⊕ 𝑺𝑩

locally 

If Bob snitches, then 

Alice gets compensated 

by the adversarial judge



Our contribution

1. A new model that captures such attacks.

2. A construction that is secure in this model.

based on the idea of self-snitching

“everybody can punish itself”

(requires the use of Non-Interactive Zero 

Knowledge to make the self-snitching 

undistinguishable from the real snitching)



Plan

1. Introduction to different models in 
distributed cryptography

2. Secret Sharing with Snitching

3. Other applications of MPC-hardness

4. Extensions and research problems 



(Zero-Knowledge) Proofs of 
Individual Knowledge (PIK)

[D., et al., CRYPTO 2023]

a similar notion: Proofs of Complete Knowledge
[Kelkar, et al., ACM CCS 2024]

prover proves that a 

message 𝑴 is stored 

entirely on a single 

machine

verifier verifies 

this claim

knows 𝑴

or

(in the ZK variant)

has some information 

about 𝑴



Applications of PIK

• preventing account sharing

• deniable messaging

• preventing vote selling in online voting

see: [D., et al., CRYPTO 2023, Kelkar, et al., 
ACM CCS 2024]



Another recent work in this 
model

J. Hsin-yu Chiang, B. David, T. Kasper Frederiksen, A. 
Mondal, E.  Yeniaras:

Detecting Rogue Decryption in (Threshold) 
Encryption via Self-Incriminating Proofs

ePrint 2024
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Extensions  

• Weaker modeling of fast queries

• Making it compatible with Bitcoin mining rigs (hope: 
better security against TEEs)

• Building protocols on top of SSS

Research question: 

1. Study MPC-hard primitives

2. Combine individual crypto it with timed crypto



Thanks!
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